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Abstract

This paper presents a meshless formulation using non-uniform rational B-spline (NURBS) basis
functions, and its applications to evaluate natural frequencies of a beam having multiple open-cracks.
Node-based NURBS basis functions are used to construct the approximation function. The characteristic
differentiability of the NURBS basis functions allows it to represent a function having specific degrees of
smoothness and/or discontinuity. The discontinuity can be incorporated simply by assigning multiple knots
at those locations. Hence, it can yield exact solutions having interior discontinuous derivatives. These
advantages of NURBS are well known, and have been used extensively in graphical approximation of
geometrical surfaces. However, it is seldom used in other engineering applications. To model the multiple
open-cracks in a beam, quartic NURBS basis functions are employed and quadruplicate knots are assigned
at the crack locations. Hence, it is capable to model the abrupt changes of slope (the first derivative of
displacement) across a crack. In the present applications, additional equivalent massless rotational springs
are inserted at the crack locations to represent the local flexibility caused by the cracks. As such, the cracked
beam can be treated in the usual manner as a continuous beam. By adopting the meshless Petrov–Galerkin
formulation, a generalized stiffness matrix for the cracked beam can be derived. Compared to the
conventional finite element method, the present method does not require a finite element mesh for the
purposes of interpolation and numerical integration. The advantages and effectiveness of the present
method is illustrated in solving the eigenfrequencies of a beam having multiple open-cracks of different
depths.
r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been well recognized that the presence of a crack in a structure leads to changes in the
natural frequencies of the structure. When monitoring the health of the structures, the changes of
this structural dynamic parameter have been used as one of the indicators to determine the
incursion of crack in the structure. For beam structures, many researchers [1–8] have evaluated
the effect of one or two cracks on the natural frequencies of uniform beams. Shifrin and Ruotolo
[9] developed a method to deal with uniform beams with an arbitrary finite number of transverse
open-cracks. Recently, Zheng and Fan [10] used a kind of modified Fourier series to determine the
frequency changes of non-uniform beams with multiple cracks. In the above-mentioned methods,
all are based on a kind of continuous model for a beam, in which the beam is modelled as an
assembly of sub-beams connected by massless rotational springs across the cracks. A system of
algebraic equations is subsequently established to determine the general eigenfrequencies.
Usually, the applications of the above methods are restricted to simple beam problems. For

more complicated structures, the use of discrete method comes naturally. In the literature, many
researchers have applied the finite element method (FEM) to evaluate the natural frequencies of a
cracked beam, such as Gounaris and Dimarogonas [11], Qian et al. [12], and Morassi [13], just to
name a few. However, the conventional FEM alone does not work well in simulating the cracked
beam problems. It either needs the help of extremely refined mesh or some kinds of special
element [14–19].
Recently, a so-called meshless method has emerged and has become popular. It appears to have

advantages over the conventional FEM in solving boundary-value problems, in particular when
costly mesh generation is required for the solutions. In the meshless method, the approximation is
constructed entirely in terms of a finite number of nodes, and no element meshes need to be
created. The meshless method embraces a variety of different approaches [20–25]. Their major
difference lies in their ways of constructing the approximation basis function. In this paper, node-
based non-uniform rational B-spline (NURBS) basis functions are used to construct the
approximation function. Distribution of nodes in the NURBS representation is arbitrary and
non-uniform. By adopting a kind of local symmetric weak form (LSWF)—the Petrov–Galerkin
approach, the meshless method with NURBS basis functions can be formulated. The
characteristic differentiability of the NURBS basis functions results in that a function with
specific degrees of smoothness can be represented easily. On the other hand, the NURBS basis
functions can be built over a non-uniform knot vector with some multiple knots. The magic of
assigning multiple knots at selected locations leads to the deflected shape with desired degrees of
discontinuity at those locations. Hence, it can yield exact solutions having interior discontinuous
derivatives.
The main objective of this paper is to demonstrate the versatility of the NURBS meshless

method in evaluating the natural frequencies of a beam with an arbitrary number of cracks. It
enables the cracked beam to be analyzed in the usual manner as a continuous beam by inserting
equivalent massless rotational springs at the crack locations to represent the local flexibility
introduced by the cracks. To model the abrupt changes of slope across a crack, the approximation
function is constructed by employing the quartic NURBS basis functions defined over a vector of
non-uniform nodes/knots having quadruplicate knot assigned at the crack location. Detailed
formulation via the local Petrov–Galerkin approach is shown in the following sections.
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2. Formulation

2.1. Discretized NURBS representation with controllable degree of differentiability

The node-based NURBS basis functions are used to construct the approximation.
Given a vector, X ; of non-uniformly spaced nodes/knots covering a domain O;

X ¼ x0;y; x0|fflfflfflfflffl{zfflfflfflfflffl}
pþ1

;xpþ1;y;xm�p�1; xm;y;xm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pþ1

8><
>:

9>=
>;; ð1Þ

the approximation uhðxÞ of dependent variable uðxÞ over the domain O is defined by

uhðxÞ ¼
Xn

i¼0

ciRi;pðxÞ: ð2Þ

In Eq. (1), p is the degree of the NURBS basis functions to be built, m þ 1 denotes the number of
nodes/knots, and x0 and xm are co-ordinates for boundary nodes. In Eq. (2), ci are constant
coefficients to be determined, n corresponds to the number of NURBS basis functions on the
interval ½x0;xm�; and Ri;pðxÞ is the ith NURBS basis function of degree p: The function Ri;pðxÞ can
be defined over the nodal vector X [26] as follows:

Ri;pðxÞ ¼
Ni;pðxÞwiPn
j¼0 Nj;pðxÞwj

; ð3Þ

where Ni;pðxÞ is the ith B-spline basis function of degree p which has the recursive definition
known as the Cox–deBoor algorithm as follows:

Ni;0ðxÞ ¼
1 xipxoxiþ1;

0 otherwise;

(

Ni;pðxÞ ¼
x � xi

xiþp � xi

Ni;p�1ðxÞ þ
xiþpþ1 � x

xiþpþ1 � xiþ1
Niþ1;p�1ðxÞ; ð4Þ

wi in Eq. (3) are called weights. Specially, if wi are equal to 1 for all i;

Ri;pðxÞ ¼ Ni;pðxÞ; ð5Þ

i.e., the B-spline basis functions are special cases of the NURBS basis functions.
It is noted from Eq. (1) that the boundary nodes/knots have multiplicity of p þ 1 if the NURBS

basis functions to be built are of pth degree. As a result, the prescribed boundary conditions can
be incorporated in the NURBS basis functions a priori and therefore, the essential boundary
conditions can be imposed easily. In addition, the NURBS basis functions can be built over a
vector of non-uniformly spaced knots, of which multiple knots can be assigned at any interior
locations over the domain. The pth degree NURBS basis functions are Cp�k continuous at the
knot with multiplicity of k: In other words, the continuity of the NURBS basis functions will
decrease with increasing the knot multiplicity. Fig. 1(a) shows the quartic NURBS basis
functions, Ri;4ðxÞ; defined over the knot vector f0; 0; 0; 0; 0; 10

3
; 10
3
; 10
3
; 10
3
; 20
3
; 10; 10; 10; 10; 10g: The

first derivatives of Ri;4ðxÞ ði ¼ 3; 4; 5Þ are plotted in Fig. 1(b). It is noted that a quadruplicate knot
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is assigned at the location of x ¼ 10
3
and the resulting quartic NURBS basis function R4;4ðxÞ and its

first derivative have a cusp and a jump at the quadruplicate knot ðx ¼ 10
3
Þ; respectively. Therefore,

by building the NURBS basis functions over the non-uniform knot vector with multiple knots
allocated at selected locations, the approximations via the NURBS basis functions will possess the
desired degree of discontinuities at those locations.

2.2. NURBS meshless formulation for a multiple-cracked beam

The previous section shows that the discretized NURBS representation is an excellent candidate
for solving boundary-value problems, especially for problems with discontinuities. In this section,
the NURBS representation is incorporated with the meshless local Petrov–Galerkin (MLPG)
approach [24] and applied to evaluate the natural frequencies of a beam with an arbitrary number
of cracks.
The free vibration equation of a beam, assumed with the uniform cross-section, is

EI
@4uðx; tÞ
@x4

þ rA
@2uðx; tÞ

@t2
¼ 0 for 0oxoL; ð6aÞ

where uðx; tÞ is the amplitude of the transverse displacement of the beam axis, r is the material
density, A is the cross-sectional area of the beam, EI is the bending stiffness, and L is the length of
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the beam. By assuming that the beam axis is under time-harmonic vibration, i.e.,

uðx; tÞ ¼ uðxÞeiot ¼ ueiot; ð6bÞ

Eq. (6a) can be simplified as

EIu0000 ¼ o2rAu for 0oxoL; ð6cÞ

where u ¼ uðxÞ is purely a function of x; and o is the frequency of the natural transverse motion.
The boundary conditions are given as

uðxÞ ¼ u0 on Gu and
@uðxÞ
@x

¼ y0 on Gy ð7aÞ

M ¼ M0 on GM and V ¼ V0 on GV ð7bÞ

Gu-GV ¼ | and Gy-GM ¼ |; ð7cÞ

where M and V denote the moment and the shear force, respectively. Gu; Gy; GM ; and GV denote
the boundary regions where displacement, slope, moment, and shear force are specified,
respectively.
At the crack location, the continuity conditions on displacement, bending moment, and shear

force are

uðx�
c Þ ¼ uðxþ

c Þ; ð8aÞ

u00ðx�
c Þ ¼ u00ðxþ

c Þ; ð8bÞ

u000ðx�
c Þ ¼ u000ðxþ

c Þ; ð8cÞ

and a discontinuity condition is introduced into the rotation of the beam axis by [1]

u0ðxþ
c Þ � u0ðx�

c Þ ¼ au00ðx�
c Þ; ð8dÞ

where xc is the co-ordinate of the crack location and a is the flexibility of the rotational spring
which is used to represent the effect of crack. For one-sided crack, a can be expressed as a function
of the crack depth a and the beam depth h as follows [1,10]:

a ¼ 5:346hgðxÞ; ð9Þ

where

gðxÞ ¼ 1:8624x2 � 3:95x3 þ 16:375x4 � 37:226x5 þ 76:81x6

� 126:9x7 þ 172x8 � 143:97x9 þ 66:56x10; ð10aÞ

x ¼
a

h
: ð10bÞ

By starting from the local weighted-residual equation [24],

0 ¼
Z
OðiÞ

s

viðEIu0000 � o2rAuÞ dO; ð11Þ

where vi ¼ viðxÞ are weight functions and OðiÞ
s is a local sub-domain located entirely inside the

global domain O: The local weak form of Eq. (6c) can be obtained through the integration by
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parts of Eq. (11) as follows:

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s
� ½v0iEIu00�@OðiÞ

s
; ð12Þ

where @OðiÞ
s denotes the boundary of the local sub-domain OðiÞ

s :
The boundary of the sub-domain, @OðiÞ

s ; can be decomposed into subsets of @OðiÞ
s - #O; @OðiÞ

s -Gu;
@OðiÞ

s -Gy; @OðiÞ
s -GM ; and @OðiÞ

s -GV ; where #O is the interior of the global domain. By using these
decompositions, Eq. (12) can be written as follows:

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s - #O � ½v0iEIu00�@OðiÞ

s - #O

þ ½viEIu000�@OðiÞ
s -Gu

� ½v0iEIu00�@OðiÞ
s -Gy

þ ½viEIu000�@OðiÞ
s -GV

� ½v0iEIu00�@OðiÞ
s -GM

: ð13Þ

If the weight functions vi are deliberately selected such that their values and derivatives vanish at
@OðiÞ

s - #O; Eq. (13) is reduced to the following equation:

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s -Gu

� ½v0iEIu00�@OðiÞ
s -Gy

þ ½viEIu000�@OðiÞ
s -GV

� ½v0iEIu00�@OðiÞ
s -GM

: ð14Þ

Since the moment M and the shear force V are related to the displacement u through the
equations

M ¼ EIu00 and V ¼ �EIu000; ð15Þ

the natural boundary conditions in Eq. (7b) can be written as

M0 ¼ ½EIu00�@OðiÞ
s -GM

and V0 ¼ �½EIu000�@OðiÞ
s -GV

: ð16Þ

Applying Eq. (16), Eq. (14) can be expressed as

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s -Gu

� ½v0iEIu00�@OðiÞ
s -Gy

� ½viV0�@OðiÞ
s -GV

� ½v0iM0�@OðiÞ
s -GM

: ð17Þ

When a crack occurs in the local sub-domain OðiÞ
s ; Eq. (17) can be written as

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s -Gu

� ½v0iEIu00�@OðiÞ
s -Gy

� ½viV0�@OðiÞ
s -GV

� ½v0iM0�@OðiÞ
s -GM

þ ½EIviðx�
c Þu

000ðx�
c Þ � EIviðxþ

c Þu
000ðxþ

c Þ�

� ½EIv0iðx
�
c Þu

00ðx�
c Þ � EIv0iðx

þ
c Þu

00ðxþ
c Þ�: ð18Þ

As shown in Eq. (8), the deflection of the beam and its second and third derivatives are continuous
at the crack location, but a discontinuity of the first derivative is expected there. To attain the
desired degree of discontinuity, quartic NURBS basis function Ri;4ðxÞ over a vector of non-
uniform knots having quadruplicate knot at the crack location is employed. The following
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conditions can be satisfied:

Ri;4ðx�
c Þ ¼ Ri;4ðxþ

c Þ; ð19aÞ

R00
i;4ðx

�
c Þ ¼ R00

i;4ðx
þ
c Þ; ð19bÞ

R000
i;4ðx

�
c Þ ¼ R000

i;4ðx
þ
c Þ; ð19cÞ

R0
i;4ðx

�
c ÞaR0

i;4ðx
þ
c Þ: ð19dÞ

By adopting the Petrov–Galerkin method, the weight functions are chosen to be different from the
approximation functions. As a special case, the same forms can be used, i.e.,

viðxÞ ¼ Ri;4ðxÞ: ð20Þ

As a result, the function vi and its first derivative v0i can satisfy the following conditions:

viðx�
c Þ ¼ viðxþ

c Þ; ð21aÞ

v0iðx
�
c Þav0iðx

þ
c Þ: ð21bÞ

By substituting Eqs. (8) and (21) into the local weak form equation (18), the following equation
can be obtained:

0 ¼
Z
OðiÞ

s

EIv00i u00 dO�
Z
OðiÞ

s

o2rAviu dOþ ½viEIu000�@OðiÞ
s -Gu

� ½v0iEIu00�@OðiÞ
s -Gy

� ½viV0�@OðiÞ
s -GV

� ½v0iM0�@OðiÞ
s -GM

þ
EI

a
½v0iðx

�
c Þ � v0iðx

þ
c Þ�½u

0ðx�
c Þ � u0ðxþ

c Þ�: ð22Þ

Finally, substituting Eqs. (2) and (20) into Eq. (22) leads to a set of equations as follows:

ðK þ K c � o2M sÞc ¼ f ; ð23Þ

where K denotes the stiffness matrix of the beam without a crack. K c is a correction matrix for K
due to the crack. M s and f denote the mass matrix and external load vector, respectively. The
entries in K ; K c; M s; and f are defined by

Kij ¼
Z
OðiÞ

s

EIR00
i;4R

00
j;4 dOþ EI ½Ri;4R

000
j;4�@OðiÞ

s -Gu
� EI ½R0

i;4R
00
j;4�@OðiÞ

s -Gy
; ð24aÞ

Kc;ij ¼
EI

a
½R0

i;4ðx
�
c Þ � R0

i;4ðx
þ
c Þ�½R

0
j;4ðx

�
c Þ � R0

j;4ðx
þ
c Þ�; ð24bÞ

Ms;ij ¼
Z
OðiÞ

s

rARi;4Rj;4 dO; ð24cÞ

fi ¼ ½Ri;4V0�@OðiÞ
s -GV

þ ½R0
i;4M0�@OðiÞ

s -GM
: ð24dÞ

For an arbitrary number of cracks, Eq. (24b) can be rewritten as

Kc;ij ¼
X

nc

EI

anc

½R0
i;4ðx

�
c;nc

Þ � R0
i;4ðx

þ
c;nc

Þ�½R0
j;4ðx

�
c;nc

Þ � R0
j;4ðx

þ
c;nc

Þ�; ð24eÞ

where nc represents the number of cracks.
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It is worth noting that the matrix K c represents the cracks’ softening effect on the stiffness of
the beam. By adding it into the matrix K ; a general stiffness matrix for the cracked beam, %K ; can
be obtained as

%K ¼ K þ K c: ð25Þ

Substituting Eq. (25) into Eq. (23), the natural frequencies of the cracked beam, o; can be
evaluated by solving the following equation of motion:

ð %K � o2M sÞc ¼ f : ð26Þ

3. Numerical examples

To validate the present method, the natural frequencies of cracked beam with different crack
depths and locations are evaluated. Numerical results are compared with available published
results.

3.1. Example 1

Firstly, a simply supported beam with a single crack is considered. The crack has variable
position from the left end to the right end of the beam and its depth also varies (a ¼ 10; 15, 20, or
25 mm). The changes of first three natural frequencies, Do; are calculated by the present method.
Results are compared with those obtained by the conventional FE method [6]. As shown in
Figs. 2–4, the results from the present method coincide well with the FEM results in Ref. [6]. It is
worth noting that the finite element solutions needs a well-defined finite element mesh in the
region adjacent to the crack as shown in Fig. 5 [6] whereas no element mesh needs to be
constructed in the present method. For easy visualization and highlighting the advantages of the
present method, the vibration mode shapes of the beam are plotted. Fig. 6(a) shows the first
deflection mode shape for the beam with the single crack at mid-span. The corresponding slope is
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plotted in Fig. 6(b). As expected, a discontinuity in slope is represented exactly at the crack
location. It cannot be obtained by the conventional FEM. In addition, the solutions for multiple
open-cracks of various depths at various locations can be obtained easily by the present
formulation. No cumbersome remeshing is needed.

3.2. Example 2

Subsequently, a cantilever beam with two cracks is analyzed by the present method. For the
purpose of comparing the results with those in Ref. [9] the same properties of the beam are used as
follows: length L ¼ 800 mm; rectangular cross-section with width b ¼ 20 mm and height h ¼
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20 mm; Young’s modulus E ¼ 2:1� 1011 N=m2; and material density r ¼ 7800 kg=m3: The first
crack has a fixed location at xc1 ¼ 120 mm and a depth of a1 ¼ 2 mm: The second crack’s position
varies from the clamped end to the free end of the beam and three depths are tested (a2 ¼ 2; 4, and
6 mm). Figs. 7–9 show the ratios of oi=o0i versus the location of the second crack xc2; where oi
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and o0i are the first three natural frequencies of the cracked and uncracked beam, respectively. It
can be observed that the results obtained by the present method agree very well with those
published in Ref. [9].

4. Conclusions

The formulation of the NURBS meshless method is shown in this paper. The method is applied
to examine the crack-induced eigenfrequency changes of beam structure. The beam can have any
boundary conditions, and have arbitrary number of cracks. To impose the discontinuous
conditions for the rotation of the beam at the crack locations, a non-uniform knot vector having
quadruplicate knots at the crack locations is used to build the quartic NURBS basis functions.
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Fig. 8. Effect of the second crack on the second natural frequency of a cantilever beam.
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Subsequently, adopting the local Petrov–Galerkin method leads to a generalized stiffness matrix
for the cracked beam. The natural frequencies of the cracked beam can then be evaluated by
solving an equation of motion. The great advantage of the present method is derived from the
discretized NURBS basis functions, which allow easy modelling of different orders of
discontinuities. Numerical examples show that the present method is effective and easy to use.
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